

M.Wave Professional

紫外/可见分光光度计应用系统

P/N: 434002

REV. 1.0.1

E	录

第一章.	-	功能简介	1
—.	-	主要功能	1
第二章.	2	安装	1
—.	3	系统配置	2
二.	<u>.</u>	安装 M.Wave Professional	2
三.	î	卸载	4
四.	j	运行	5
五.	i	设置通讯口	5
六.	i	设置用户信息	6
七.	i	设置数据格式	6
八.	i	设置界面风格	6
九.]	联机	7
第三章.		集成环境介绍	7
—.	-	主界面	7
二.		菜单栏与工具栏	8
第四章.	ł	操作	9
—.	-	基本操作	9
	1.	背景校正	9
	2.	测量样品	9
	3.	设定并走到一个波长	9
	4.	显示模式切换	10
<u> </u>		文件操作	10
	1.	创建测试	10
	2.	打开文件	10
	3.	保存测试	10
	4.	导出数据到 Excel 表格(计算机上必须安装了 Microsoft Excel 软件)…	11
	5.	导出图谱为 bmp 图片	11
	6.	打印	11
三.	÷	光谱操作	11
	1.	自动标注波峰	11
	2.	光谱的局部放大	12
	3.	修改坐标	12

	4.	自适应坐标	12
	5.	设为当前图谱	12
	6.	设置当前光谱颜色	12
	7.	光谱平滑	12
	8.	光谱的四则运算	12
	9.	导数光谱	13
四.	〕	其它操作	14
	1.	修改一个样品	14
	2.	删除一个样品	14
	3.	命名一个样品	14
	4.	走样品槽(需选配自动八联池架)	14
	5.	开关钨灯	14
	6.	开关氘灯	15
	7.	设置光源切换点	15
	8.	获取暗电流	15
	9.	建立系统基线	15
	10.	槽差配对(需安装自动八联池架附件)	15
第五章.	汳	则量	16
—.	뒸	已量分析	16
<u> </u>	국	加力学分析	19
三.	ን	6谱扫描	20
四.		3波长分析	22
五.	D	NA/蛋白质分析	23
六.	貟	皆量扫描	25
附录一.	뒸	已量分析方法	27
附录二.	D	0NA/蛋白质分析方法	27

第一章. 功能简介

M.Wave Professional 是专为 UV/V-1×××系列紫外可见型分光光度计设计的基于 Windows 的光谱分析应用软件。本软件界面简洁,操作方便,功能强大。使用本软件可实现完全用 PC 机来 控制仪器进行测量、数据分析、保存和打印等功能,彻底改变了以往繁琐的测试过程,帮助您轻松 的完成工作。

一. 主要功能

定量分析

提供 2 种方法建立标准曲线 (系数法和标准样品标定法);最多可用 20 个标准样品标定标准曲线或者直接输入曲线方程系数建立标准曲线;标准曲线可用 3 种方式拟合(一阶线性过零拟合、一阶线性拟合和二阶拟合)。

动力学分析

采样时间间隔可选(0.5, 1.0, 2.0, 5.0, 10.0, 30.0 和 60.0 秒); 扫描曲线显示 方式可切换(时间-透过率或时间-吸光度); 自动查找波峰; 光谱数学运算、光谱平滑。

光谱扫描

扫描间隔可选(0.1,0.2,0.5,1.0,2.0 和 5.0nm);扫描曲线显示方式可切换(波 长-透过率、波长-吸光度和波长-能量);自动查找波峰;光谱数学运算、光谱平滑。

• 多波长分析

最多可同时分析 20 个波长的光度值。

■ DNA/蛋白质分析

内置2种分析方法;测试参数可自定义。

能量扫描

光源模式可切换(钨灯、氘灯或自动切换);扫描间隔可选(0.1, 0.2, 0.5, 1.0, 2.0 和 5.0nm); 放大倍率可设定(1~8倍);自动查找波峰。

第二章. 安装

本章介绍如何将 M.Wave Professional 安装到电脑上。

一. 系统配置

- 奔腾或以上的个人电脑;
- CD-ROM 驱动器 ;
- 2 个或以上 USB 接口;
- 32 MB 内存(推荐 256 MB 以上);
- 50 MB 以上的硬盘空间;
- Microsoft Windows 2k、Windows XP、Vista 或 7。

二. 安装 M.Wave Professional

- 第一步. 将 M.Wave Professional 软件光盘放入 CD-ROM 驱动器;
- 第二步. 双击"我的电脑"→"光盘驱动器"中的"Setup.exe"开始安装,提示用户先要断开 电脑和仪器的 USB 连接线,单击 **下一步**,显示欢迎界面,单击 **下一步**;

第三步. 输入用户信息,单击下一步;

🛃 M.Wave Professional 安装程序			23
用户信息 请输入您的用户信息,并单击"下一	-步" 继续。		E
名称:			
潘华			
公司:			
MAPADA			
	〈返回(12)	下一步巡〉	取消(C)

第四步.选择安装路径,单击下一步;

第五步. 选择快捷启动文件夹,单击 **下一步**。所有设定信息将显示,单击 **下一步**开始复制 文件到硬盘上;

M.Wave Professional 安装程序	M.Wave Professional 安装程序
快捷方式文件夹 您想将快捷方式安装到间处?	准备安装 现在您正准备安装 M. Wave Professional 2.0
快撞方式图坛将在下面描出的文件夹中创罐。如果您不想使用默认文件夹,您可以建入 颜的名称,或从列表中这择现有的文件夹。	现在安装程序已有定纳的信息将 M. Fave Professional 安装到您的计算机中。 经每回门下记录
快捷方式文件夹:	特殊時候下改量・ 安陸文件本・ C:\Program Files\Wave Professional
Wave -	快捷方式文件夹: MY ave
 只对当前用户安装快捷方式 使快捷方式对所有用户都可用 	请单击"下一步"继续安装。
< 返回④ 下一步 Ø > 取消℃)	< 近回 (2) 下一步 (2) > 取消 (2) 取消 (2)

第六步. 根据安装提示,连接好电脑和仪器间的 USB 通讯线,打开仪器,系统将自动识别仪器 并安装驱动程序;

M.Wave Professional 安装程序	8
重要信息 请阅读以下信息。	EPC
请插上电脑和分光光度计的USB通讯线,等待Windows完成配置。	
< 返回(19) 下一步(19) >	取消C)

第七步. 单击 完成 完成所有程序安装。

三. 卸载

第一步. "开始" → "所有程序" → "M.Wave Professional" → "Uninstall M.Wave Professional 2.0",将显示卸载信息,单击 **下一步**开始卸载;

第二步. 所有文件卸载完毕后,单击完成结束卸载。

四. 运行

先将"USB钥匙"插入电脑的 USB 口,有 2 种方法开始运行 M.Wave Professional 软件。

- 1. 双击桌面上的 M.Wave Professional 图标 🚺 ;
- 2. "开始"→"所有程序"→"M.Wave"→"M.Wave Professional"。

五. 设置通讯口

第一步. 查看通讯口号。用 USB 通讯线将仪器和电脑连接好,在桌面上右键单击"我的电脑"→ "硬件"→ "设备管理器"→ "端口"→ "CP210X USB to UART Bridge Controller (COMx)"括号里的串口号就是该仪器设备的端口号。

文件(E)操作(A) 查看(V) 帮助(A)	
□ ● JIERY □ DV/CD-DOM 秘密动器 □ DV/CD-DOM 秘密动器 □ DE TA/ATATI 控制器 □ ● CSI 和 BAID 控制器 □ ● 公理器 □ ● 公理 □ ● 公理器 □ ● 公理 □ ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	
 ● 鍵盘 ● 軟盘控制器 ● 新音、視频和游戏控制器 ● 最初和其它指针设备 ● ● 日本自己线控制器 ● ● PA1ama 	~

第二步. 确认仪器处于待机主界面,启动 M.Wave Professional 后,单击"视图"→"选项" 菜单,弹出"选项"窗体,单击 搜索将自动查找和仪器的通讯口,搜索到通讯口后 单击 确定保存设置,如果选中复选框"启动时连接仪器",则下次启动 M.Wave

Professional 时,软件将自动和仪器连接。

1. 选项	23
通讯 用户信息 数据格式 界面	
搜索可用的设备	
搜索	n. At
□ 启动时连接仪器	
确定 取消 .	应用

六. 设置用户信息

单击"视图"→"选项"菜单,弹出"选项"窗体,单击"用户信息"标签,选中并输入相关 用户信息,单击 确定保存设置,这些信息会出现在您的测试报告中。

■ 选项	8
通讯 用户信息 数据	屠格式│界面 │
设置	
☑ 项目	XXX
☑ 用户	XXXX
☑ 组织	XXXXXXX
🔲 备注	XXXXXXXXXXX
🗖 日期/时间	
	确定 取消 应用

七. 设置数据格式

单击"视图"→"选项"菜单,弹出"选项"窗体,单击"数据格式"标签,选择各测量结果的显示格式,单击确定保存设置。

■ 选项	X
通讯 用户信息 数排	屠格式 界面
设置	
吸光度	0.0000 💌
%透过率	0.00 🔻
浓度	0.000 🔻
%能量	0.0 🔹
	确定 取消 应用

八. 设置界面风格

单击"选项"菜单,弹出"选项"窗体,单击"界面"标签,用户可根据自己喜好自定义界面

的风格和配色方案,单击确定保存设置。

🔜 选项		X
通讯 用户信息	数据格式 界面	
定制		
风格	Office 2003 🔻	
背景		默认
前景		
	确定 取消	「 」 应用

九. 联机

联机前请先确认,仪器要在主界面上。

单击主工具栏上 🌌 快捷键连接,连接后该图标处于选中状态,再按可释放主机。

第三章. 集成环境介绍

本章将介绍 M.Wave Professional 的集成运行环境。

一. 主界面

软件启动后将显示主界面。

二. 菜单栏与工具栏

菜单栏和工具栏为您提供了3种不同的途径操作本软件。

• 用键盘或鼠标通过菜单完成所有功能的操作;

• 大部分常用的功能可通过快捷工具栏来完成;

主工具	ŧĽ													- X
1	3 🖬 🗃	8	۵ 🖾	🔝 🍛	3	\times	1 02	03	04	0 5	06	07	8	ž
光谱工	具栏						• X							
•) @ @	А	T //	\\4 ●	•	8.0	0							
操作工	具栏												-	×
波长	500.0nm	2	吸光度	0.0004		透过率	99.	91%		ZI			>	ť,

• 大部分常用的功能可通过右键弹出式菜单完成。

第四章. 操作

本章介绍 M.Wave Professional 的相关操作。

一. 基本操作

1. 背景校正

将参比置于光路中,单击快捷工具栏上 21 校正背景。

2. 测量样品

将待测样品置于光路中,单击快捷工具栏上 🕨 读取样品测量值。

3. 设定并走到一个波长

单击快捷工具栏上 🎉 设置波长。在"波长"框内输入目的波长,单击 走到 仪器将波长移 到设置值,当"重新获取暗电流"复选框选中时,在校准背景时会重新测暗电流。

-	

🗼 设置油	发长		×
一设置波长			
波长	658.2	走到	
🗌 重新获明	収暗电流		

4. 显示模式切换

单击快捷工具栏上 🗛 或 👎 可切换显示模式 (吸光度-波长或透过率-波长)。

二. 文件操作

1. 创建测试

单击"文件"→"新建",选择相应的测试或工具栏上选择相应的图标。

2. 打开文件

单击快捷工具栏上 🥃 , 弹出"打开"窗口,选择要打开的文件名,单击打开。

0

在不同的测量模式仅能打开该模式下的文件。各测量模式下对应的文件后缀名如下:

- 定量测量: *.qua
- 动力学分析: *.kin
- 光谱扫描: *.wls
- 多波长测量: *.mti
- DNA/蛋白质测量: *.dna
- 能量扫描: *.ens
- 标准曲线: *.std
- 系统基线: *.sbl

3. 保存测试

单击快捷工具栏上 归 , 弹出"保存"窗口, 输入文件名, 单击保存。

4. 导出数据到 Excel 表格 (计算机上必须安装了 Microsoft Excel 软件)

单击"文件"→"导出到 Microsoft Excel",软件将自动开启 Excel 软件,并将数据导入到该软件中。

5. 导出图谱为 bmp 图片

单击"文件"→"导出图片",弹出"保存"窗口,输入文件名,单击保存。

6. 打印

单击快捷工具栏上, 弹出"打印"窗口,设置打印参数后,单击打印。

三. 光谱操作

1. 自动标注波峰

单击快捷工具栏上 🥂 可自动查找波谱的波峰进行标注,相应的峰值会在列表中;显示查找的峰高可以单击 🏹 设置。

/♥峰高设	置		$\mathbf{\mathbf{N}}$
设置 分辨率	0.01	确定	

2. 光谱的局部放大

单击快捷工具栏上 🛄 使其处于选中状态,鼠标会变成十字线,按下鼠标左键移动鼠标选取 范围后松开,可选中图谱的某一区域进行放大,再次单击该图标退出该状态。

3. 修改坐标

单击快捷工具栏上 🛄 可自定义显示坐标。

🔍 坐标范	围	×
设置		
X最小值	650.0	
X最大值	660.0	
Y最小值	0.0	
Y最大值	100.0	确定

4. 自适应坐标

单击快捷工具栏上 🔛 将坐标调整为最适合图谱的值。

5. 设为当前图谱

单击"光谱处理"→"当前光谱"下的光谱列表中选取相应光谱设为当前即可。

6. 设置当前光谱颜色

单击"光谱处理"→"光谱颜色"下的颜色列表中选取相应颜色更改当前光谱的颜色。

7. 光谱平滑

单击"光谱处理"→"光谱平滑",可去除扫描时的噪声,使曲线更加光滑。

8. 光谱的四则运算

单击快捷工具栏上 🕒 🕒 😣 😁 弹出数学运算对话框当前光谱和另一光谱进行四则运算。

9. 导数光谱

单击快捷工具栏上 🔟 弹出"导数"对话框,对当前光谱求导(1~4 阶)。

幕 导数		×
设置 遷光谱 求导阶数	C:\Documents and Settings\潘华 一阶导致	、桌面\M.Wave
	确定	取消

四. 其它操作

1. 修改一个样品

在数据列表中选中一个要修改的数据或将要修改的图谱设为当前图谱,将待测样品置于光路中, 单击快捷工具栏上 💱 重新测量样品,并且该结果将替代原来的。

2. 删除一个样品

在数据列表中选中一个要修改的数据或将要修改的图谱设为当前图谱,单击快捷工具栏上 🔀 删除。

3. 命名一个样品

在数据列表中选中一个要命名的行,双击"样品名称"进入编辑状态,输入名称后回车。

4. 走样品槽(需选配自动八联池架)

单击 ^{↓1}… ^{↓8}可将相应槽位走到光路中。

5. 开关钨灯

单击"设备"→"开/关钨灯"打开或关闭钨灯。

6. 开关氘灯

单击"设备"→"开/关氘灯"打开或关闭氘灯。

7. 设置光源切换点

单击"设备"→"设置光源切换点设置",输入切换波长,单击确定完成。

웥 光源切换点	设置	×
设置 光源切换点	340.0	确定

8. 获取暗电流

单击"设备"→"获取暗电流",系统将重新采样暗电流的值,并替换原有值。

9. 建立系统基线

只有当仪器使用时间较长或使用环境有较大变化后才需要重新建立!

单击"设备"→"建立系统基线",弹出"系统基线"对话框,可单击 打开调用以前存储过的系统基线进行测试,确认光路中无任何遮挡物,单击扫描开始建立系统基线,单击取消中断扫描并退出,如果选中"保存系统基线"选项将在完成系统基线扫描后弹出"保存"对话框保存系统基线,以便以后调用;

📱 系统基线	_	×
→扫描设置	1100.0	打开
终止波长	190.0	扫描
□ 保存系统基线		取消

10. 槽差配对

单击"设备"→"比色皿校正",弹出"比色皿校正"对话框,根据提示依次放入"参比比色 皿",1#比色,2#比色皿...后点击确定,最多可以校正4个比色皿,如果比色皿数量不足4 个,按取消完成并退出校正。此操作可消除不同比色皿之间的配对误差。

z

11. 槽差复位

单击"设备"→"复位比色皿",所有比色皿的误差将复位为"0"。

第五章. 测量

本章介绍 运用 M.Wave Professional 进行测量、分析样品。

一. 定量分析

M.Wave Professional 采用标准曲线法来测试固定波长下的浓度值。

第一步. 单击快捷工具栏上 涨 新建一个定量分析;

M.Wave - [Qu	antitative Analys	is2] //5(〇) ※溢你理(S) 容円(140 都時)	LD)							
: XIII 6020	⊗× 01 0	02 03 04 05 06		 © Q Q €	ATINY	1000	3 0	0			
波长 未知		未知 通过率	未知 Z	⊢ u X 🖢 –				_			
ST2	结果	1					标准的	鰣线			
		样品名称	吸光度	浓度 (ug/ml)		^		1.			
定量分析								0.2000			
0								0.1500			-
动力学分析								0.1000			-
~								0.0500			- c
光谱扫描								0.0000	2.0000 4.00	.00 6.0000 8.	0000
000											
多波长分析								C=39.2958	*A +0.7743		
								r=0.981798	3		
DNA/蛋白分析							_				
							-	序号	吸光度	浓度 (ug/ml)	<u> </u>
							-	2	0.0002	1.000	
								3	0.0218	2.000	
								4	0.0623	4.000	
								5	0.1913	8.000	
						-	\vdash				•
脱机								样品槽位	2置:未知	2013/1/28	10:04

第二步.建立标准曲线;

单击快捷工具栏上 📡 设置定量测试参数;

🔪 定量分析设置			X
 测试方法 ● 单波长法 ○ 双波长法 m 1.000 n 1.000 ○ 三波长法 	浓度单位 单位 ug/ml ▼ 拟合方式 拟合方式 — 阶 ▼	 浓度1 0.000000 浓度2 1.000000 浓度3 	5 ▼ 浓度 11 浓度 12 浓度 13
波长 波长1 400.0 波长2 550.0	标准样品标定法 ⑦ 系数法 ⑨ 标准样品标定法	浓度 4 4.000000 浓度 5 8.000000 浓度 6	浓度 14 浓度 15 浓度 16
波长 3 600.0 A=A1	回归方程系数 k0 0.7743 k1 39.2958	浓度 7 浓度 8 浓度 9 浓度 10	浓度 17 浓度 18 浓度 19 浓度 20
🗌 扣除比色皿误差			确定 取消

有 2 种方法建立标准曲线,用标准样品标定或直接输入曲线方程的系数。

方法1:系数法

- (1) 单击"系数法"选项;
- (2) 单击"拟合方式"选择拟合曲线方式;
- (3) 在相应的筐内输入方程系数;
- (4) 如果需要在测量时消除不同比色皿之间的误差,勾选"扣除比色皿误差"选项;
- (5) 单击 确定 完成设置。

	方程系数
kO	0.0000
k1	1.0000
k2	0

方法 2:标准样品标定法

- (1) 单击"标准样品标定法"选项;
- (2) 单击"标准样品数量"选择标准样品数量(最多 20 个);
- (3) 在标准样品列表相应列中输入标准样品浓度值;

~浓度 标准样品	数量	3	~
浓度 1	1.000	浓度 11	11
浓度 2	2,000	浓度 12	12
浓度 3	3.000	浓度 13	13
浓度 4	4	浓度 14	14
浓度 5	5	浓度 15	15
浓度 6	6	浓度 16	16
浓度 7	7	浓度 17	17
浓度 8	8	浓度 18	18
浓度 9	9	浓度 19	19
浓度 10	10	浓度 20	20

- (4) 如果需要在测量时消除不同比色皿之间的误差,勾选"扣除比色皿误差"选项;
- (5) 单击 确定 完成设置;
- (6) 将参比置于光路中,单击快捷工具栏上 Z1 仪器将走到测试波长后自动完成校正背景。
- (7) 将 1 号待测标准样品置于光路中,单击快捷工具栏上 ▶ 测得吸光度值,如果在设置参数时选择了"扣除比色皿误差",会弹出"比色皿选择"对话框,选定样品实际使用的对应的比色皿后,点击确定。
- (8) 按第(6)步方法测试完所有标准样品,完成后将自动画出标准曲线。

浓度 (ug/ml)	吸光度	序号
1.0000	0.2923	1
2.0000	0.5686	2
3.0000	0.9154	3
4.0000	1.1669	4
5.0000	1.6216	5

标准曲线的坐标可通过单击 🛄 来修改。也可以将建立的标准曲线按 归 将曲线保存起

来,下次测试时可按 羄 来加载标准曲线做测试。

第三步. 将待测样品置于光路中(如果仪器装有自动八联池架,根据样品放置,按 → 设置相应槽位),单击快捷工具栏上 》测试,结果将显示在列表中。如果在设置参数时选择了"扣除比色皿误差",会弹出"比色皿选择"对话框,选定样品实际使用的对应的比色皿后,点击确定。

M.W	ave - [C:V	Oocuments and Se	ttings\潘华\桌	面 WI. Wave Pro_	_Updating\My M.Wave Files\Sa	mple_Quantita	tive Analysis]	-	_	_ 🗆 🔀
: 文件()	5 視图(Y)	· 设备(D) 操作(D)) 光谱处理(<u>5</u>)	窗口(Y) 帮助(H)						_ 8 ×
3	2 🖬 🔿	1 % 🔿 📐 🏛 🖌) 🗞 🗶 🚺	02 03 04 05 00	6 🛛 7 🕼 🖀 📲 💿 💿 🔍 🤅	(€ A T	Nº AH O C	× ÷ • .		
波长	300.0nm	▲ 吸光度 0.20	05 透け案	63.03% Z				•		
仕用			1.000			1	≑##db&₽			
70.7%	度星	世日夕歌	1X 14 HF	法 新 (up (pd))		(``	5-1 EE EE 05-5-5			
	1	1+88-0.69	0.2008	2 17			1			
	2		0.2008	2.17			4 0000			
	3		0.2008	2.17			4.0000			-
	4		0.2007	2.17			3.0000			
	5		0.2008	2.17			2.0000		and the second s	
	6		0.2007	2.17			1.0000			
	7		0.2009	2.17			1.0000		1 1 1	1 _A
	8		0.2007	2.17			0.0000			
	9		0.2009	2.17			0.0000	0.1000	0.2000 0.3000 0.4	1000
>>>	-									
	-						0-7 2052	81.0.7050		
	-						C=7.3055			
							1=0.99730	24		
							<u> </u>	nTE adde mite	her mit (una (mal))	-
						-	1	90,768	1.00	
						-	2	0.1987	2.00	
							3	0.3075	3.00	
							Ť	510070	1.50	
	-									
-	-									
-										
-										
-										
	1					- I				-
联机					能量:6810.5	狭缝贯	【度:2.0nm	样品槽位置:1	2008-10-23	9:27

二. 动力学分析

本章介绍怎样测试样品在固定波长下吸光度或透过率随时间的变化。

第一步. 单击快捷工具栏上 🛄 建立一个动力学分析;

第二步. 单击快捷工具栏上 述 设置动力学分析参数;

🔀 动力学设置	받 크	_	×
一光度模式		~响应模式	
● 服光度(A)		○正常(N)	
○透过率(<u>T</u>)		⊙慢速(S)	
参数		显示	
波长(nm)	1090.0	最大(<u>X</u>)	0.0050
延时(s)	0.0	最小(<u>N</u>)	-0.0050
时间(s)	60.0		
间隔(s)	0.5 💌	🔽 显示所有 🖯	七谱(<u>A</u>)
		确定(0)	取消(⊆)

- 第三步. 将参比置于光路中,单击快捷工具栏上 21 校正背景;
- 第四步. 将待测样品置于光路中,单击快捷工具栏上 🕨 开始扫描,想要中断单击 🢷 取消测试。

M.Wave - [I	C:Wocuments and Settings	\潘华\桌面W.W	ave Pro_Updatir	ng\My M.Wave Files\S	ample_Kinetics]	_		_		_ 🗆 🔀
: 文件(E) 視图	B(V) 设备(D) 操作(O) 光词	普处理(5) 窗口(<u>W</u>)	帮助(H)							_ 8 ×
		× 101 02 02	04 DE DE D7 D							
· 🔤 🖂 🖉	🍯 🖉 🗢 🚾 🗰 🚳 🖧		UA UD UB UY US			00000				
波长 300.0nr	n 🧸 吸光度 -0.0003	透过率 100.07%	延时	剩余	Z1 🕨 💷 💥 🖕					
							:数据》	ŧ		ņ
	Δ						席号	时间(s)	服光度	% 透过率 🔼
							1	0.0	0.0000	99.99
0.0050							2	1.0	0.0000	99,99
							3	2.0	0.0000	100.01
							4	3.0	0.0000	100.01
							5	4.0	0.0000	100.00
							6	5.0	0.0000	100.00
							7	6.0	-0.0001	100.02
							8	7.0	-0.0001	100.02
0.0005							9	8.0	0.0000	100.01
0.0025							10	9.0	-0.0001	100.02
							11	10.0	0.0000	99.99
							12	11.0	0.0000	100.01
							13	12.0	-0.0001	100.02
							14	13.0	0.0000	100.00
							15	14.0	-0.0001	100.02
							16	15.0	0.0000	100.00
0.0000		le marine			~		17	16.0	-0.0001	100.02
0.0000				\sim	$\sim \sim \sim$		18	17.0	-0.0001	100.03
							19	18.0	0.0000	100.01 🛄
							20	19.0	-0.0001	100.02
							21	20.0	0.0000	100.01
							22	21.0	-0.0001	100.03
							23	22.0	-0.0001	100.03
							24	23.0	0.0000	100.01
-0.0025							25	24.0	-0.0001	100.02
							26	25.0	0.0000	100.01
							27	26.0	-0.0001	100.02
							28	27.0	-0.0001	100.02
							29	28.0	0.0000	100.01
							30	29.0	-0.0001	100.02
							31	30.0	0.0000	100.01
-0.0050						t(s)	32	31.0	0.0000	100.01
-0.0000			20.0	477			33	32.0	-0.0001	100.03
0.	.0 15	0.0	30.0	45.	J 60	0.0	34	33.0	-0.0001	100.02
							35	34.0	-0.0001	100.03 🔛
联机				能量:13569.4	狭缝宽度:2.0nm	样品槽位	置:1	20	08-10-23	10:19

三. 光谱扫描

本章介绍怎样扫描一定波长范围内吸光度或透过率情况。

第一步. 单击快捷工具栏上 🏡 建立一个光谱扫描;

M.Wave -	[Spectrum	i Scan1]	建进入用 (4)	1900/00 - 2000	(1)	_	_			-			🛚 🔀
· XI+(D) 18	- 20 (U.S.) - 20 (U.S.) - 20 (U.S.)) 🖾 🎹 🚷) (væstsæts) ⊗ × <mark>0</mark> 1	Ba⇔(<u>m</u>) +549 02 03 04 05	i 06 07 08 🛎	∎ ⊙ ⊙ Q	Q 🕀 🔼	т [<mark>/?</mark> //!	• * • •	•			
被长 1090.0	0nm 🧸	吸光度 -0.005	2 透过率	101.21% Z	• • X	Ŧ				主教長	ŧ		ņ
	A									序号	被长(nm)	吸光度	%透过率
0.0050													
0.0025													
0.0000													
0.0000													
-0.0025													
-0.0050								1	WL.(nm)				
19	90.0		417.5		645.0	87.	2.5	1100	0.0				
联机						能量:4071.9	務	· 缝宽度:2.0nm	样晶槽位	 置:1	20	08-10-23	10:47

第二步. 单击快捷工具栏上 述 设置波长扫描参数;

🗶 光谱扫描词	贺置		
光度模式		~响应模式	
● 吸光度(A)		○正常(<u>N</u>)	
○透过率(<u>T</u>)		● 慢速(S)	
参数		-显示	
起始(nm)	1100.0	最大(<u>X</u>)	0.0050
终止(nm)	190.0	最小(<u>N</u>)	-0.0050
间隔(nm)	1.0		
──扫描模式───			
重复(<u>R</u>)	1 💌	☑ 显示所有:	光谱(<u>A</u>)
		确定(<u>O</u>)	取消(<u>C</u>)

第三步. 将参比置于光路中,单击快捷工具栏上 ²¹ 弹出"基线"对话框,单击 扫描开始扫描基线,单击 取消 中断扫描并退出;

≥1 基线		×
- 扫描设置		
起始波长	1100.0	
终止波长	190.0	日理
间隔	1.0nm 💌	取消

第四步. 将待测样品置于光路中,单击快捷工具栏上 🕨 开始扫描,想要中断单击 🢷 取消 扫描。

四. 多波长分析

本章介绍怎样一次在一个或多个波长(最多20个)下进行光度测量。

第一步. 单击快捷工具栏上 🗰 建立一个多波长分析;

м.w	ave - [h	lulti Wavelength	Analysis1]		_	_	_		_ 🗆 🔀
: 文件()	E) 視图	(1) 设备(12) 操1	作(Q) 光谱处理(S) 窗口	1(业) 帮助(出)			_		_ 8 ×
S	🗳 🖬 é	3 % 🕛 🔼 🖩	🛯 🎭 📚 🗡 🚺 🗤	03 04 05 06 07 08	🞽 🚽 💿 💿 🔍 🖲	रे <mark> A</mark> T 🕂 🥂 (🤇			
被长	1090.0n	n 🧸 吸光度 ·	0.0166 通过率 103.0	89% Zi 🕨 💷 🎙	K				
	序号	样品名称	吸光度 (500.0nm)	吸光度 (510.0nm)	吸光度 (520.0nm)	吸光度 (530.0nm)			<u> </u>
>>>									
I									
									
—									
									-
¥ Xétri					10月-4110.2	20122192101-2 07	111日時方票·1	2009 10 22	11:02
at al					RE20214119.3	洪 辅武度: 2.0r	m 片品槽位宜1	2008-10-23	11:03

第二步. 单击快捷工具栏上 述 设置多波长分析参数;

🖹 多波长分枝	行 设置			×
设置				
波长数量	4 💌			
波长1(nm)	500.0	波长11(nm)	600.0	
波长2(nm)	510.0	波长12(nm)	610.0	
波长3(nm)	520.0	波长13(nm)	620.0	
波长4(nm)	530.0	波长14(nm)	630.0	
波长5(nm)	540.0	波长15(nm)	640.0	
波长6(nm)	550.0	波长16(nm)	650.0	
波长7(nm)	560.0	波长17(nm)	660.0	
波长8(nm)	570.0	波长18(nm)	670.0	F
波长9(nm)	580.0	波长19(nm)	680.0	确定
波长10(nm)	590.0	波长20(nm)	690.0	取消

第三步. 将参比置于光路中,单击快捷工具栏上 ²¹校正背景; 第四步. 将待测样品置于光路中,单击快捷工具栏上 **》**开始测试,结果将显示在数据列表中。

M.V	Vave - [C	:Wocuments and	d Settings\潘华\桌面W	1.Wave Pro_Updating	3Wy M.Wave Files\Sa	mple_Multi Waveleng	th Analysis]	_	_ 🗆 🔀
: 文件	(E) 視图	(V) 设备(D) 操	作(Q) 光谱处理(5) 窗口(W) 帮助(H)					_ 8 ×
	🗃 🖬 é	a i 🥵 🕕 🛤 🖩	🛾 🔬 i 🍉 🗙 🚺 🗤 🖉	3 04 05 06 07 08	≝]:⊙⊙@⊕				
: 2#1/	1000.0	8 117 Martin	0.0102 ()#)+** 104 54				*		
: 02.02	1090.011	NUTLE -	0.0195 0.0195						
	序号	样品名称	吸光度 (500.0nm)	吸光度 (510.0nm)	吸光度 (520.0nm)	吸光度 (530.0nm)			<u> </u>
>>>	1		0.0000	0.0000	-0.0002	0.0000			
—	2		0.0000	0.0000	-0.0001	-0.0001			
—	3		0.0000	0.0000	0.0000	-0.0001			
I	4		0.0000	0.0000	0.0001	-0.0002			
—	5		0.0001	0.0001	0.0001	-0.0003			
<u> </u>									
<u> </u>									
<u> </u>									
<u> </u>									
<u> </u>									
I									
<u> </u>									
									-
									•
联机					能量:4130.6	狭缝宽度:2.0n	m 样品槽位置:1	2008-10-23	11:07

五. DNA/蛋白质分析

本章介绍 DNA/蛋白质的测量方法。

第一步. 单击快捷工具栏上 💹 建立一个 DNA/蛋白质分析;

M.Wave -	DNA/Protein An	alysis1]							
2件(E) 視	图(Y) 设备(Q) 拍	操作(<u>0</u>) 光谱处理(5)	窗口(业) 帮助(出)	_			_		- 8
u) 😂 🖬	a 🛞 🕕 💹	🏢 🦀 🗞 🗡 📗	1 02 03 04 05 06	07 08 🖀 🚽 💿	💿 🔍 🕀 А Т	$ \sqrt{4} \oplus \oplus $	× ÷ • .		
€ 1090.0	hm 🧸 吸光度	-0.0160 透过率	103.75% Z	• • • • • • •					
序号	样品名称	吸光度 (260.0nm)	吸光度 (280.0nm)	DNA浓度 (ug/ml)	蛋白质浓度 (ug/ml)	比率			
>>									
		_							
-									
-									
				** = -	4446.0		17 D 18/1- 19.4	2009 10 22	44.00

第二步. 单击快捷工具栏上 述 设置多波长分析参数;

ば DNA/蛋白质分析设	置 🛛 🔀
测试方法	DNA浓度系数
◎ 方法一	f1 62.900
○方法二	f2 36.000
○ 自定义	蛋白质浓度系数
	f3 1552.000
波长1(nm) 260.0	f4 757.300
波长2(nm) 280.0	单位
□背景(nm) 320.0	单位 ug/ml 🖌
	确定 取消

第三步. 将参比置于光路中,单击快捷工具栏上 ²¹ 校正背景; 第四步. 将待测样品置于光路中,单击快捷工具栏上 **》** 开始测试,结果将显示在数据列表中。

M.V	/ave - [C	:Wocuments and	d Settings\潘华\5	表面WI.Wave Pro_	Updating\My M.Wav	e Files\Sample_DNA	Protein Analysis]		_	- 🗆 🔀
: 文件	E 視图	(1) 设备(12) 操	作(<u>0</u>) 光谱处理(<u>5</u>)	窗口(翌) 帮助(日)						_ 5 ×
	🗃 🖬 é	3 % 🕕 💹 🖪	🗉 🎎 🗞 🗡 🚺	02 03 04 05 08	5 Q7 Q8 🚄 🔤 🕥	© @ € ∧ T	∧° ∧ ^µ ⊕ ⊖	× ÷ • .		
波长	1090.0nn	□ 🧸 吸光度 -	0.0187 透过率	104.41% Z						
<u> </u>	序号	样品名称	吸光度 (260.0nm)	吸光度 (280.0nm)	DNA浓度 (ug/ml)	蛋白质浓度 (ua/ml)	比率			•
>>>	1		0.1544	0.1377	4.755	96.783	1.121			
	2		0.1544	0.1362	4.809	94.455	1.134			
	3		0.1546	0.1360	4.828	93.993	1.137			
	4		0.1542	0.1359	4.807	94.141	1.135			
	5		0.1542	0.1359	4.807	94.141	1.135			
<u> </u>										
<u> </u>										
<u> </u>										
—										
<u> </u>										
—										
——										
I										
—										
I										
—										
I										
I										
I										
I										
-										
										-1
联机					能量	4113.0 🗿	·缝宽度:2.0nm	样品槽位置:1	2008-10-23	11:11 //

六. 能量扫描

本章介绍怎样扫描一定波长范围内能量的变化情况。

第一步. 单击"文件"→"新建"→"能量扫描"建立一个能量扫描;

第二步. 单击快捷工具栏上 述 设置波长扫描参数;

🔀 能量扫描设	5 <u>置</u>		_ 🗆 🔀
┌光源切换模式-		日描次数	
○ 自动(A)		重复(<u>R</u>)	1
○钨灯(<u>W</u>)			
⊙氘灯(<u>D</u>)			
参数		显示	
起始(nm)	700.0	最大(X)	100.0
终止(nm)	600.0	量小(N)	0.0
间隔(nm)	1.0		
增益	t	☑显示所有能量图谱(A)	
		确定(<u>0</u>)	

- 自动切换模式 仪器根据设定的切换点自动切换使用氘灯或钨灯
- 氘灯模式 全波长范围内使用氘灯作为光源
- 钨灯模式 全波长范围内使用钨灯作为光源
- 第三步. 将待测样品置于光路中,单击快捷工具栏上 🕨 开始扫描,想要中断单击 💷 取消 扫描。

8

附录一. 定量分析方法

- 单波长法: Abs.=A1
- 双波长法: Abs.=|m*A1-n*A2|
- 三波长法: Abs.=A₁- (λ_1 - λ_2) * (A₂-A₃) / (λ_2 - λ_3) -A₃

附录二. DNA/蛋白质分析方法

方法一:	$\begin{split} C_{\text{DNA}} &= (A_1 \text{-} A_{\text{ref}}) * f_1 \text{-} (A_2 \text{-} A_{\text{ref}}) * f_2 \\ C_{\text{Protein}} &= (A_2 \text{-} A_{\text{ref}}) * f_3 \text{-} (A_1 \text{-} A_{\text{ref}}) * f_4 \\ \text{Ratio} &= (A_1 \text{-} A_{\text{ref}}) / (A_2 \text{-} A_{\text{ref}}) \end{split}$
	其中: A ₁ =A _{260nm} ,A ₂ =A _{280nm} ,A _{ref} =A _{320nm} (可选) f ₁ =62.9,f ₂ =36.0,f ₃ =1552,f ₄ =757.3
方法二:	$\begin{split} &C_{\text{DNA}} = (A_1 \text{-} A_{\text{ref}}) * f_1 \text{-} (A_2 \text{-} A_{\text{ref}}) * f_2 \\ &C_{\text{Protein}} = (A_2 \text{-} A_{\text{ref}}) * f_3 \text{-} (A_1 \text{-} A_{\text{ref}}) * f_4 \\ &\text{Ratio} = (A_1 \text{-} A_{\text{ref}}) / (A_2 \text{-} A_{\text{ref}}) \end{split}$
	其中: A ₁ =A _{260nm} ,A ₂ =A _{230nm} ,A _{ref} =A _{320nm} (可选)

 $f_1=49.1$, $f_2=3.48$, $f_3=183$, $f_4=75.8$

上海美谱达仪器有限公司

上海市松江出口加工区三浜路 261 号 D-10 幢, 201611 电话:021-54881172 传真:021-54886921 电子邮箱:market@mapada.com.cn 网址:www.mapada.com.cn

北京办事处

北京市丰台区宋家庄分中公 寓宋家庄一分店 C3288 室, 100005 电话:15601621723

石家庄办事处

河北省石家庄市裕华区谈固 街161号东方官邸 9-1-502 室,050037 电话:18632131068

成都办事处

四川省成都市武侯区芳草东 街 64 号 1-1-1 室 , 610041 电话:13808235506

济南办事处

山东省济南市华信路医药公 司宿舍二号楼二单元 302 室,250100 电话:18653128319

西安办事处 陕西省西安市新城区咸宁中

路 5 号兵工宾馆 433 室, 710043 电话:18792711982

昆明办事处

云南省昆明市西山区梁源小 区7栋501室,650118 电话:18725085072

哈尔滨办事处

黑龙江省哈尔滨市香坊区六 顺街 131 号 1 单元 202 室, 150036 电话:18845150902

武汉办事处

湖北省武汉市江汉区六渡桥 时代美博城 1909 室, 430032 电话:13627122242